scikit-learn
Example
import numpy as np
from sklearn.linear_model import LinearRegression
X_train = np.random.rand(50, 2)
y_train = 2 * X_train[:, 0] - 3 * X_train[:, 1] + 4 + 0.1 * np.random.randn(50)
model = LinearRegression()
model.fit(X_train, y_train)
print(f"Coefficients: {model.coef_}")
print(f"Intercept: {model.intercept_}")
X_test = [[0.5, 0.5], [0, 0], [1, 1]]
y_pred = model.predict(X_test)
print(y_pred)