OOP: An Example

Using Inheritance

USING INHERITANCE

* Explore in some detail an example of building an
application that organizes info about people

e Start with a Person object
 Person: name, birthday
 sort by last name
e get age

USING INHERITANCE

* Explore in some detail an example of building an application
that organizes info about people
* Person: name, birthday
e sort by last name
* get age

* BabsonPerson: Person + ID Number
 assign ID numbers in sequence
e get ID number
e sort by ID number

* See code in BabsonPerson.py

VISUALIZING THE HIERARCHY

VISUALIZING THE HIERARCRHY

Person:
_init__
set_birthday
get_age
1t
__str__

BabsonPerson: Calling BabsonPerson will use this
next_id: O

St __init__ procedure (because that is
1t the one visible in BabsonPerson’s
environment)

VISUALIZING THE HIERARCRHY

Person:
_init__.
set_birthday
get_age
It
__Str__

BabsonPerson: That code uses
next_id: 0 Person.__init__
—1nit__ which will in turn call this
— It procedure.

VISUALIZING THE HIERARCRHY

Person: And that creates an instance of

—Imt_ BabsonPerson (because of the first
set_birthday . .
get_age call, which inherits from the class
1t definition) but with bindings set by the
_str__ inherited __init__ code

BabsonPerson:
next_id: 0

_dnit__
1t \\

\

birthday
last_name

VISUALIZING THE HIERARCRHY

The rest of the original __init__ code

Person: callsself.id=

_init__ :
o Ay Ba!osonPe rson. nex_t_.1 d
get_age which looks up next_id in the
_ e BabsonPerson environment, and
—str__ creates a binding in se1f (i.e. the

instance)

BabsonPerson:
next_id: 0

_dnit__
1t \

\

Attribute |

birthday
last_name
id 0

VISUALIZING THE HIERARCRHY

The rest of the original __i1nit__ code calls
self.id= BabsonPerson.next_id

Person:

—init__ which looks up next_1id in the
set_birthday .
e BabsonPerson environment, and creates a
1t binding in se1f (i.e. the instance)
_str__

And then updates next_1id in the
BabsonPerson environment

BabsonPerson:
next_id: 1

_dnit__
1t \\

\

Attribute |

birthday
last_name
id 0

VISUALIZING THE HIERARCRHY

Person:

Hdnit Thus calling BabsonPerson a
set_birthday second time to create a second
get_age instance will execute the same
—1t_ sequence, but now next_1id s
__str__
\ bound to 1

BabsonPerson:
next_id: 1

_dnit__
1t \

\

Attribute |

birthday
last_name

VISUALIZING THE HIERARCRHY

Person: As before, the rest of the original

t_;)mjém __init__ codecallsself.id=
SRR BabsonPerson.next_1id
get_age : —
1t which looks up next_1d in the

BabsonPerson environment, and
creates a binding in self (i.e. the
instance)

__str__
3

BabsonPerson:
next_id: 1

_dnit__
1t \

\

Attribute |

birthday
last_name
id 1

VISUALIZING THE HIERARCRHY

The rest of the original __init__ code
callsself.id=
BabsonPerson.next_id

Person:

set__-lb?-,l.jémay which looks up next_id in the
get_age BabsonPerson environment, and creates
B b a binding in se1f (i.e. the instance)
_str__

And then updates next_id in the
BabsonPerson environment

BabsonPerson:
next_id: 2

_dnit__
1t \\

\

Attribute |

birthday
last_name
id 2

USING INHERITANCE

* Explore in some detail an example of building an application
that organizes information about people
« Person:name, birthday
e sort by last name
e get age

« BabsonPerson: Person + ID Number
 assign ID numbers in sequence
e get ID number
e sort by ID number

« Students: several types, all BabsonPerson
* undergraduate student: has class year
* graduate student

CLASS HIERARCRHY

EXERCISE

Add a Professor Class:

 Also a kind of BabsonPerson
* May have different attributes

and behaviors

e Leverages existing methods
from other classes in the
hierarchy

What is the benefit of
modularity?

Person

I

BabsonPerson

| |

Student Professor

UG Grad

ANOTHER CLASS: GRADES

* Create class, Grades, that includes instances of other
classes within it
e Why?
* build a data structure that can hold grades for students

e gather together data and procedures for dealing with
them in a single structure, so that users can manipulate
without having to know internal details

	OOP: An Example
	USING INHERITANCE
	USING INHERITANCE
	VISUALIZING THE HIERARCHY
	VISUALIZING THE HIERARCHY
	VISUALIZING THE HIERARCHY
	VISUALIZING THE HIERARCHY
	VISUALIZING THE HIERARCHY
	VISUALIZING THE HIERARCHY
	VISUALIZING THE HIERARCHY
	VISUALIZING THE HIERARCHY
	VISUALIZING THE HIERARCHY
	USING INHERITANCE
	CLASS HIERARCHY
	EXERCISE
	ANOTHER CLASS: GRADES

