OOP: An Example

Using Inheritance



USING INHERITANCE

* Explore in some detail an example of building an
application that organizes info about people

e Start with a Person object
 Person: name, birthday
 sort by last name
e get age



USING INHERITANCE

* Explore in some detail an example of building an application
that organizes info about people
* Person: name, birthday
e sort by last name
* get age

* BabsonPerson: Person + ID Number
 assign ID numbers in sequence
e get ID number
e sort by ID number

* See code in BabsonPerson.py



VISUALIZING THE HIERARCHY




VISUALIZING THE HIERARCRHY

Person:
_init__
set_birthday
get_age
1t
__str__

BabsonPerson: Calling BabsonPerson will use this
next_id: O

St __init__ procedure (because that is
1t the one visible in BabsonPerson’s
environment)




VISUALIZING THE HIERARCRHY

Person:
_init__.
set_birthday
get_age
It
__Str__

BabsonPerson: That code uses
next_id: 0 Person.__init__
—1nit__ which will in turn call this
— It procedure.



VISUALIZING THE HIERARCRHY

Person: And that creates an instance of

—Imt_ BabsonPerson (because of the first
set_birthday . .
get_age call, which inherits from the class
1t definition) but with bindings set by the
_str__ inherited __init__ code

BabsonPerson:
next_id: 0

_dnit__
1t \\

\

birthday
last_name




VISUALIZING THE HIERARCRHY

The rest of the original __init__ code

Person: callsself.id=

_init__ :
o Ay Ba!osonPe rson. nex_t_.1 d
get_age which looks up next_id in the
_ e BabsonPerson environment, and
—str__ creates a binding in se1f (i.e. the

instance)

BabsonPerson:
next_id: 0

_dnit__
1t \

\

Attribute |

birthday
last_name
id 0




VISUALIZING THE HIERARCRHY

The rest of the original __i1nit__ code calls
self.id= BabsonPerson.next_id

Person:

—init__ which looks up next_1id in the
set_birthday .
e BabsonPerson environment, and creates a
1t binding in se1f (i.e. the instance)
_str__

And then updates next_1id in the
BabsonPerson environment

BabsonPerson:
next_id: 1

_dnit__
1t \\

\

Attribute |

birthday
last_name
id 0




VISUALIZING THE HIERARCRHY

Person:

_Hdnit_ Thus calling BabsonPerson a
set_birthday second time to create a second
get_age instance will execute the same
—1t_ sequence, but now next_1id s
__str__
\ bound to 1

BabsonPerson:
next_id: 1

_dnit__
1t \

\

Attribute |

birthday
last_name




VISUALIZING THE HIERARCRHY

Person: As before, the rest of the original

t_;)mjém __init__ codecallsself.id=
SRR BabsonPerson.next_1id
get_age : —
1t which looks up next_1d in the

BabsonPerson environment, and
creates a binding in self (i.e. the
instance)

__str__
3

BabsonPerson:
next_id: 1

_dnit__
1t \

\

Attribute |

birthday
last_name
id 1




VISUALIZING THE HIERARCRHY

The rest of the original __init__ code
callsself.id=
BabsonPerson.next_id

Person:

set__-lb?-,l.jémay which looks up next_id in the
get_age BabsonPerson environment, and creates
B b a binding in se1f (i.e. the instance)
_str__

And then updates next_id in the
BabsonPerson environment

BabsonPerson:
next_id: 2

_dnit__
1t \\

\

Attribute |

birthday
last_name
id 2




USING INHERITANCE

* Explore in some detail an example of building an application
that organizes information about people
« Person:name, birthday
e sort by last name
e get age

« BabsonPerson: Person + ID Number
 assign ID numbers in sequence
e get ID number
e sort by ID number

« Students: several types, all BabsonPerson
* undergraduate student: has class year
* graduate student



CLASS HIERARCRHY




EXERCISE

Add a Professor Class:

 Also a kind of BabsonPerson
* May have different attributes

and behaviors

e Leverages existing methods
from other classes in the
hierarchy

What is the benefit of
modularity?

Person

I

BabsonPerson

| |

Student Professor

UG Grad



ANOTHER CLASS: GRADES

* Create class, Grades, that includes instances of other
classes within it
e Why?
* build a data structure that can hold grades for students

e gather together data and procedures for dealing with
them in a single structure, so that users can manipulate
without having to know internal details
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